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SUMMARY

A 60-degree delta wing, an F-106B, and an XB-70 models with and
without flap deflections were tested in static and dynamic ground
effect in the 36-by-51-inch subsonic wind tunnel at the University
of Kansas. Dynamic ground effect was measured with movable sting
support. For flow visualization, a tufted wire grid was mounted on
the movable sting behind the model.

Test results showed that the 1lift and drag increments in
dynamic ground effect were always lower than the static values.
Effect of the trailing-edge flap deflections on lift increments was
slight. The fuselage reduced the lift increments at a given ground
height. From flow visualization under static conditions, the vortex

core was seen to enlarge as the ground was approached.
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1. JINTRODUCTION

Flight tests to determine ground effect on the aerodynamic
characteristics of an airplane are usually conducted with either the
fly-by technique or the constant-angle-of-attack approach. Using
the former method, a constant ground height is maintained in each
flight. It has been found that results obtained from this technique
agreed well with those from conventional static wind-tunnel test
(References 1-3). On the other hand, with the latter method,
constant angle-of-attack and power setting are maintained while the
ground height varies continuously in the same flight (Reference
4). It was found in Reference 4 that a significant difference was
present in the incremental 1ift coefficient determined by these two
methods for a modified F5D-1 configuration. The main advantage of
the constant angle-of-attack technique is that it represents a
better simulation of an actual landing operation. In addition, it
requires fewer test runs for the same ground-height and angle-of-
attack range (Reference 4).

To simulate the constant angle-of-attack technique in a wind
tunnel, a test technique of moving a model toward a ground board was
developed in Reference 5. Five wing models, including those of the
F-104A and the XB-70, were tested. It was found that for
configurations with low sweep, dynamic test results agreed well with
static data. However, for highly swept, low-aspect-ratio wings, the
1ift increment from static ground effects tests was found to be

considerably higher than that from dynamic testing. In addition,



dynamic wind-tunnel test results correlated well with flight test
results by the constant angle—-of-attack technique. Since only plain
wings were tested, it was not certain how a complete configuration
with flap deflections would affect the correlation.

In the present 1investigation, an F-106B and an XB-70 ailrcraft
models were tested to determine dynamic ground effect for wing alone
and wing-body combinations, with and without flap deflections. 1In
addition, a 60-degree delta wing was also tested for direct
comparison with dynamic ground effect data obtained in the NASA

Langley Vortex Research Facility.

2. APPARATUS AND PROCEDURE
2.1 Models

Three basic models were used for the experimental study
(Figures 1, 2, and 3). The 60-degree delta wing model had been
previously tested by Chang (Reference 5) and Wentz (Reference 7).
The 1/48 scale model of the F-106 was constructed from parts of a
plastic kit with a wing machined from aluminum. The important
geometric features of the ailrcraft were closely simulated. The
model was equipped with flaps which could be set at angles of +30°,
+15°, or 0°.

The wind-tunnel model of the XB-70-1 was a 1/100 scale mo@el.

The wing and canard were constructed from aluminum. The wing flaps



could be set to +30°, #15°, or 0°. The fuselage was from a plastic
scale model so that important geometric features of the aircraft

were closely simulated.

2.2 Mounting

The models were mounted in an inverted position on a movable
sting support (Figure 4). Figure 5 shows the sting support with
model positioned in the 36" x 51" test section of the University of
Kansas wind tunnel. A fixed ground board was placed 4.4" below the
wind tunnel's upper surface. By raising the model support with a
cable (Figure 6), the model approached the ground board.

For flow visualization, a tufted wire grid was mounted on the

movable sting behind the model, as shown in Figure 29.

2.3 Tests

The tests were conducted in the 36" x51" wind tunnel at
Reynolds numbers of 300,000 to 750,000. The Reynolds number was
controlled by adjusting the wind-tunnel airspeed. Tests were
conducted at angles of attack from 0° to 34° and ground heights of
an H/b = 1.6 to a low ground-board height determined by the model
length and angle of attack. Wing flap angles of 0°, 15°, and -30°
were used In the tests.

Two data acquisition systems were used in recording the test

data. The analog signals from the sensors during the static tests



were scanned at a rate of 40 channels per second and the voltages
fed to a Hewlett Packard 9826 computer. One hundred data points
from each channel were averaged to make the calculations for the
coefficients.

The dynamic test data were recorded by a twelve-channel
visacorder and the Hewlett Packard 9826 computer at a rate of
100,000 samples per second. Each 30 samples from each channel were
averaged for coefficient calculations and the calculated data
stored. These data contained an oscillatory signal from the natural
vibration of the sting during the dynamic tests. To overcome this
problem, a computer program based upon the running average of data
points was utilized to remove the vibration data. The same method

was used in Reference 5.

3. ANALYSIS OF TEST RESULTS

3.1 60-Degree Delta Wing

The longitudinal characteristics of the 60-degree delta wing
out-of- and in~ground effect are presented in Figures 7A - 7C. Lift
data in Figure 7A show that the present results without ground
effect are consistent with Wentz's, except for a > 25 degrees. At
these high a's, the present results are larger in magnitude by 8-9
percent, probably because of differences in vortex-breakdown

characteristics. However, the 1lift coefficients measured in the



Langley Vortex Research Facility (VRF) tend to be lower and the drag
coefficients tend to be higher as shown in Figure 7B. Exact reasons
for the discrepancy are not known.

Static ground-effect data with H/b = 0.30 are also presented in
Figures 7A-7C. The results show that the lift coefficients are
always increased, the drag coefficients are decreased, and the
longitudinal stability is Increased (i.e., BCm/BCL becomes more
negative) as the ground height is reduced from H/b = 1.60 to 0.30.
Note that in free air, the leading-edge vortices tend to move
inboard as the angle of attack is increased, so that the loading
near the tips 1is reduced even before vortex breakdown to produce a
less negative pitching moment. From Figure 7C it may be conjectured
that in ground effect the leading-edge vortices not only become
stronger but also stay more outboard (see also "Flow Visualization,"”
Section 3.4), perhaps because of reduced streamwise velocity due to
ground-induced backwash. As a result, the pitching moment becomes
more negative. For a configuration without much vortex 1lift, such
as the F-104, this type of change in pitching moment in ground
effect did not occur (Reference 5).

Static and dynamic ground effect data on 1ift and drag are
compared in Figures 8A and 8B at a = 14 degrees. As expected, both
1ift and drag coefficients with dynamic effect are lower than the
values under static conditions. It is of interest to note from the
Langley Vortex Research Facility (VRF) test data shown in Figure 8A
that increasing the sink rate tends to decrease the 1lift further.

This 18 perhaps caused by the increased vortex lag effect as the



sink rate 1s increased. Data in Figures 8A and 8B are replotted in
Figure 9A and 9B in percent increase in C; and Cp. At high ground
heights, all incremental C; data (Figure 9A) are comparable in
magnitude. At lower ground heilghts the dynamic values are
definitely lower than the static ones, and the Langley VRF data show
still lower values with higher sink rate. A similar conclusion is

applicable to incremental CD as shown in Figure 9B.

3.2. F-106

The longitudinal characteristics of a clean configuration of
the F-106B out of ground effect are presented in Figures 10. The
1ift coefficients obtained in the Langley 12-foot tunnel are always
lower than the present results (Figure 10A), although the vortex-
breakdown characteristics appear to be quite similar. In addition,
the drag coefficients are higher (Figure 10B) and the pitching
moments are more positive (Figure 10C) from the 12-foot tunnel. For
the latter, since the slopes of the moment curves for both sets of
data are nearly the same, the discrepancy is not caused by the
difference in the location of moment center.

As expected, the wing-body 1lift is lower than that of the wing
alone (Figure 10A) and the wing-body drag is higher (Figure 10B).
Although the longitudinal stability of the wing-body configuration,
as evidenced by the reduced moment-1lift slope, is lower than that of
the wing alone, the zero-1lift moment of the former is much more
negative. This 1s probably caused by the nose camber of the

fuselage.



The static ground effect on longitudinal aerodynamic
characteristics is presented in Figures 11A-11C. As expected, the
1i1ft is increased and the drag is reduced in ground effect as shown
in Figures 11A and 11B. Longitudinal stability 1is increased
substantially (Figure 11C).

Comparing the results with flap deflection in and out of ground
effect (Figures 12 and 13) indicates that 1lift is increased as usual
by ground effect. However, at a given CL, Cp is not much different
in ground effect (see Figures 12B and 13B) at low Cp- Again, the
longitudinal stability 1s increased by ground effect (Figures 12C
and 13C).

In Figure 14, variation of longitudinal characteristics with
ground height in the static and dynamic tests are presented at an a
of 14 degrees. With a positive flap angle of 15 degrees, lift
increases more rapidly (Figure 14A); and the drag increase 1s much
smaller (Figure 14B) as the ground height is reduced, when compared
with a flap angle of -30 degrees. Meanwhile, the 1lift and drag
coefficient with dynamic effect are always slightly lower than the
static data. On the other hand, the static pitching moment becomes
much more negative with a positive flap angle as the ground board 1s
approached (see Figure 14C). Comments about the pitching moment in
ground effect for the 60-degree delta wing are also applicable for
the F~106B configuration.

The percent increases in 1lift and drag at a = 14 degrees with

ground height are presented in Figure 15. Although the life



increments for flap angles of +15 degrees and —-30 degrees are
approximately the same, the change in Cp 15 much lower with a
positive flap angle, as it was indicated in Figure 14. This 1is
perhaps because with a positive flap angle, the leading—edge vortex
flow is stronger and the conical camber of the F-106 will produce
the effect of a vortex flap to reduce the drag. In addition, the
1ift and drag coefficients with dynamic effect are lower than the
static data (Figure 15). Again, vortex lag may be the contributing
factor.

Fuselage effectiveness on 1lift coefficient, in static and
dynamic ground effect is presented in Figure 16. In 1lift increment,
the wing—-alone value is always larger than the wing + body +
vertical tail configuration in both static and dynamic ground

effect.

3.3 XB-70-1 Configuration

The longitudinal characteristics of the XB-70-1 with various
ground heights are presented in Figures 17. The 1ift coefficlents
obtained in the present (KU) tests are always higher than those from
the Langley 7-by-10-foot—-tunnel results (Figure 17A). However, the
lift-curve slope is seen to be in good agreement. In addition, the
drag coefficients are higher (Figure 17B) and the pitching moments
are more positive (Figure 17C) from the 7 x 10 foot tunnel. But the
slopes of the moment curves for both sets of data are nearly the

game.



The static ground effect on longitudinal aerodynamic
characteristics of wing alone, wing-body-vertical-tail, and wing-
body-vertical-tail-canard configurations are presented in Figures
18A-18C, Figures 19A-19C, and Figures 20A-20C, respectively. As
expected, the 1lift is increased in ground effect (Figures 18A, 194,
and 20A) and the drag is reduced in ground effect at a given Cp
(Figures 18B, 19B, and 20B). Meanwhile, the longitudinal stability
is increased by ground effect (Figures 18C, 19C, and 20C).

From Figures 19C and 20C, it is seen that the canard reduces
the longitudinal stability substantially. Once the 1ift coefficient
reaches 0.6 (a » 12°), the pitching—-moment slope relative to the
quarter mean aerodynamic chord starts to change from a negative to a
positive value (Figure 20C). This variation of the pitching-moment
slope indicates that the XB-70-1 has a longitudinal instability in
the high angle-of-attack range.

Comparing the reéults with flap deflection in and out of ground
effect (Figures 21 and 22) indicates that 1lift 1s increased as usual
by ground effect at low C; (Figures 21A and 22A). Again, the
longitudinal stability 1is increased by ground effect (Figures 21C
and 22C). However, unlike the F-106B configuration, which produces
a more linear variation for the moment curves in ground effect up to
high angles of attack (Figures 11C and 13C), the pitching moment
curves for the XB-70-1 configuration are quite nonlinear (Figures
20C, 21C, and 22C). This is caused by the canard because without it
the pitching moment curves are much more linear (Figures 18C and

19C).



The 1ift and drag coefficients in static and dynamic ground
effect are shown in Figure 23. Variation with ground height is
presented at an a near 14 degrees. The 1lift and drag are increased
as the ground height is reduced. While the 1ift coefficients with
dynamic effect are lower than the static values (Figure 234),
similar to those for the F-106B configuration (Figure 14A), the drag
coefficients in dynamic ground effect tend to be higher than the
static values, contrary to the results for the F-106B configuration
(Figure 14B). This is perhap because the F-106B is equipped with a
conical camber similar to a vortex flap, but not the XB-70-1
configuration. The pitching moment becomes more negative as the
ground board is approached (Figure 23C). The variation 1s more
rapid with a negative flap deflection. This again can be explained
with the more rapidly increasing vortex lift near the tips as the
ground 1is approached. Note that the dynamic pitching moment data
are not presented because they are judged to be not reliable. 1In
addition, the 1lift increment at a flap angle of -30 degrees is
higher than that at a flap angle of +15 degrees (Figures 24A,
24B). However, the drag increment with the negative flap angle is
lower (Figure 24B). Some dynamic test results are also presented in
Figure 24. Again, the 1lift and drag increments with dynamic effect
are always lower than the static test values.

The 1lift coefficient of the static and dynamic test data with
fuselage effect are shown in Figure 25. The wing + body + vertical
tail + canard configuration produces less 1lift increment than the

wing alone in both static and dynamic tests.

10



In Figure 26, flight and wind tunnel static and dynamic ground-
effect data are compared at an angle of attack of about 9.5
degrees. The general trend for the increase in 1lift is the same for
all four sets of data. However, there 1s considerable disparity in

magnitudes.

3.4 Flow Visualization

The results of the tests to locate vortex core center due to
ground effect are presented in Figures 27 and 28. The vortex core
was visualized with a tufted screen which was mounted just behind
the model's trailing edge.

As the ground height (H/b) was reduced, the vortex core center
tended to move outboard (Figures 27A and 28A). Meanwhile, as the
flap deflection increased from -30° up to +15° down, the vortex core
center shifted inboard (Figures 27A and 28A) and moved closer to the
wing upper surface (Figures 27B and 28B). In addition, the vortex
core (D/b = Dia/span) was enlarged due to ground height reduction

(Figure 29).

4. CONCLUDING REMARKS

A 60-degree delta wing, an F-106B, and an XB-70 models with and
without flap deflections have been tested in static and dynamic
ground effect. From these test data, the following conclusions

could be made.

11



The present data on lift coefficients for the 60-degree delta
wing and the XB-70 model were always higher than the Langley
(7-by-10-foot or VRF) results, both in the static and dynamic
tests. However, the lift-curve slopes appeared to be in good
agreement.

The 1ift and drag increments in dynamic ground effect were
always lower than the static values.

Trailing-edge flap deflection affected the lift increments due
to ground effect only slightly. However, the vortex core
center tended to move slightly more inboard and closer to the
wing upper surface due to flap deflection in ground effect.
Comparing the results with wing alone and wing-body data, the
fuselage was found to reduce the 1lift coefficient and 1lift
increments at a given ground height.

From flow visualization, the vortex core diameter was seen to

increase as the ground height was reduced.

12
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Figure 10 Longitudinal Aerodynamic Characteristics for an
F-106 Model in Out-of-ground Effect
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&t Datg for the XB-70-1 Configuration from the

KU and Langley 7 x 10 Tunnels
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